M.Sc. Mathematics $1^{\text {st }}$ Semester MECHANICS-I

Paper-MATH-554

Time Allowed-Three Hours] [Maximum Marks-100
Note :-Attempt FIVE questions in all, selecting at least ONE question from each Section. All questions carry equal marks.

SECTION-A

1. Obtain the radial and transverse components of acceleration of a particle which describe the plane curve $r=f(\theta)$ in the form :

$$
\ddot{\mathrm{r}}-\mathrm{r} \dot{\theta}^{2}, \frac{1}{\mathrm{r}} \frac{\mathrm{~d}}{\mathrm{~d} \theta}\left(\mathrm{r}^{2} \dot{\theta}\right)
$$

If the curve is the equiangular spiral $r=a \exp (\theta \cot \alpha)$ and if the radius vector to the particle has a constant angular velocity, show that the resultant acceleration of the particle makes an angle 2α with the radius vector and its magnitude $\frac{\mathrm{v}^{2}}{\mathrm{r}}$, where v is the speed of the particle.

a2zpapers.com

2. (a) Show that two equal and opposite rotations of a rigid body about distinct parallel axes are equivalent to a translation of the body.
(b) A rigid lamina is moving in its own plane and one point A in it has velocity $\overrightarrow{\mathrm{u}}$ relative to a fixed origin 0 . If $\overline{\mathrm{w}}$ is the angular velocity of the lamina, show that the point P in it has velocity $\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{w}} \times \overrightarrow{\mathrm{r}}$ relative to 0 , where $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{AP}}$. Hence or otherwise prove that the position vector \vec{r}^{\prime} of the instantaneous centre I of the lamina relative to A is given by $\overrightarrow{\mathrm{r}}^{\prime}=(\overrightarrow{\mathrm{w}} \times \overrightarrow{\mathrm{u}}) / \mathrm{w}^{2}$.

SECTION-B

3. (a) Explain the Principle of conservation of energy for a single particle.
(b) Define the impulse of a force over a finite time interval and derive the equation of impulsive motion of a particle. Also show that the K.E. gained is $\frac{\vec{I}}{2}\left(\overrightarrow{\mathrm{v}}_{1}+\overrightarrow{\mathrm{v}}_{2}\right)$ where an impulse $\overrightarrow{\mathrm{I}}$ changes the velocity of a particle of mass m from \vec{v}_{1} to \vec{v}_{2}.
4. (a) Show that the acceleration of a particle P moving along a plane curve c is $\hat{\mathrm{s}} \hat{\mathrm{t}}+\left(\dot{\mathrm{s}}^{2} / \rho\right) \hat{\mathrm{n}}$, where s denotes the arc length along c, \hat{t}, \hat{n} are unit vectors along the tangent and normal at P respectively and ρ is the radius of curvature at P.

4242(2118)/DAG-10925
2
(Contd.)

a2zpapers.com

(b) Show that the rate of increase of angular momentum about the axis is equal to the moment of the resultant force which acts on the particle.

SECTION-C

5. (a) Derive an expression for the differential equation of a particle moving in a central orbit in pedal co-ordinates.
(b) If $\mathrm{P}=\mu\left(\mathrm{u}^{2}-\mathrm{au}^{3}\right)$, where $\mathrm{a}>0$ and a particle is projected from an apse at a distance a from the centre of force with a velocity $\left(\mu \mathrm{c} / \mathrm{a}^{2}\right)^{1 / 2}$, where $a>c$, prove that the other apsidal distance of the orbit is $a(a+c) /(a-c)$ and find the apsidal angle.
6. (a) A fixed nucleus S , having positive charge, Ze repels a particle P having mass m and positive charge $e^{\prime} . P$ is projected from a great distance at infinity with initial speed v_{0} in a direction whose perpendicular distance from S is d, the medium being a vacuum. Show that its ultimate direction of motion makes an angle ϕ with an initial direction where $\cot \frac{\phi}{2}\left(\mathrm{dm} \mathrm{v}_{0}^{2} /\right.$ Zee $\left.^{\prime}\right)$.
(b) A comet travelling in an elliptic orbit round the sun under an attraction μ / r^{2} per unit mass has its tangential velocity increased a small amount $\delta \mathrm{v}$. Taking 2 a to be the major axis and e the eccentricity of the former orbit, show that the comet's least distance from the sun is increased by

$$
44 \delta \mathrm{v}\left[\mathrm{a}^{3}(1-\mathrm{e}) / \mu(1+\mathrm{e})\right]^{1 / 2} .
$$

SECTION-D

7. (a) State and prove the parallel axes theorem for moments of inertia and for products of inertia for a system of particles.
(b) A square of side 2 a has particles of masses m , $2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}$ at its vertices. Find the principal moments of inertia at the centre of the square and also the directions of the principal axes.
8. (a) Define equimomental systems. Show that a solid cuboid of mass M is equimomental with masses $\frac{M}{24}$ at the mid points of its edges and $\frac{M}{2}$ at its centre.
(b) In coplanar distribution, show that the M.I. attains extreme values along the principal axes through O in the plane of distribution.
